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Controlling photon bunching and antibunching of two quantum emitters near a core-shell sphere
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The collective spontaneous emission of two point-dipole emitters near a plasmonic core-shell nanosphere is
theoretically investigated. Based on the expansion of mode functions in vector spherical harmonics, we derive
closed analytical expressions for both the cooperative decay rate and the dipole-dipole interaction strength
associated with two point dipoles close to a sphere. Considering a plasmonic nanoshell containing a linearly
amplifying medium inside the core, the second-order correlation function for the two emitters shows that it
is possible to tune the photon emission, selecting either photon bunching or antibunching as a function of the
polarization and position of the sphere. This result opens vistas to applications involving tunable single-photon
sources in engineered artificial media.
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I. INTRODUCTION

Collective effects in the resonant fluorescence emitted by
a system of many two-level atoms have been a subject of
extensive research, both in theory and practice. The cooper-
ative behavior of emitters at subwavelength scale can strongly
modify the properties of the emitted radiation, leading, e.g., to
the superradiance effect [1–3]. From a theoretical perspective,
rigorous analytical solutions for a many-atom system can
only be obtained for systems of two or three atoms [4–7].
Indeed, the general many-atom case requires some approxi-
mations to decouple the dynamical equations and make them
suitable for numerical calculations [8]. Due to its simplicity,
the two-atom system has been used as a prototype model
for studying collective phenomena and hence isolating the
single-atom effects from those arising from correlations in
many-atom systems [4]. With the recent technical advances in
confining a few atoms or ions at small interatomic separations
[9], arranged into a linear chain [10–16] or two-dimensional
arrays [17,18], there has been a renewal of interest in the study
of systems consisting of two optical emitters for technological
applications.

In addition to collective effects, the resonant emission of
light by each emitter can also be modified by the interaction
between single emitters and the electromagnetic environment,
which is generally referred to as the Purcell effect [19–23].
Owing to their ability to concentrate light at subwavelength
scales, a great deal of attention has been devoted to manip-
ulating light emission and absorption via the Purcell effect
using plasmonic nanostructures [23–33]. In these systems, a
strong Purcell effect associated with the enhancement or sup-
pression of the spontaneous emission is achieved due to the
excitation of surface plasmons on metal-insulator interfaces,
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which modifies the local density of states (LDOS) and hence
the spontaneous decay rates [29,34–39]. More recently, the
collective coupling between quantum emitters and localized
surface plasmons has been realized in a plasmonic system
[40,41].

In general, all applications involving plasmonic materials
are limited by high Ohmic losses on metallic surfaces [28,37].
In fact, in the case of spontaneous emission in the vicinity of
a plasmonic structure, the radiative and nonradiative contri-
butions to the Purcell factor must be clearly identified since
nonradiative channels are dominant in the near field [25,26].
Among different proposals to minimize losses in plasmonic
structures, one solution is to include a gain material within the
system in order to compensate losses via stimulated emission
of plasmons [42,43]. Indeed, the use of loss compensation
in plasmonic nanoshells to achieve composite metamateri-
als with near-zero permittivity has been recently proposed
[44,45]. In addition, a gain-assisted plasmonic sphere may
exhibit very narrow visible higher-order modes which are
usually dominated in the spectrum by the broad spectral
features of lower-order modes [46].

In this paper, we propose the application of gain-assisted
plasmonic nanoshells to enhance, tailor, and control correla-
tions in the fluorescence emitted by a system of two point-
dipole emitters. The main idea is to achieve a system that
can exhibit both photon-bunching and antibunching effects
[47,48] depending on the polarization of the incident laser
field and the gain. The properties of the emitted radiation de-
pend on several parameters that describe the dipole emitters,
the geometry of the system, the electromagnetic environment,
and the laser field. All of these parameters are encoded in cor-
relation functions of the emitted field amplitude. Here, we use
the two-time second-order correlation function g(2)(τ ), with
τ = t2 − t1, which provides these emission properties of the
radiated field determining whether it is classical or quantum
in nature [4]. In particular, we consider in our investigation
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a well-known expression for the second-order correlation
function obtained by Wiegand [5] for two interacting and
weakly driven two-level atoms in equivalent positions.

To calculate the collective decay rate and the frequency
shifts to enter into the correlation functions, we generalize
previous studies on the spontaneous emission of single-dipole
emitters close to a plasmonic sphere [25–27] to the case
of a two-atom system [4]. Here, our analytical expressions
concerning the decay rates and frequency shifts are valid
for two arbitrary point-dipole emitters (e.g., two-level atoms,
ions, molecules, or quantum dots) in the vicinity of a spherical
body. These analytical expressions for the spherical case are
important to benchmark numerical calculations in order to
characterize more complex geometries.

The remainder of this paper is organized as follows. In
Sec. II, we derive closed analytical expressions for the sponta-
neous emission rate and the dipole-dipole interaction strength
of two dipole emitters in the vicinity of a sphere. These are
the main analytical results of our study. A brief review of
the two-time second-order correlation function for a two-atom
system is provided in Sec. III. The scattering properties of
a plasmonic core-shell sphere within the framework of the
Lorenz-Mie theory are presented in Sec. III A. Section III B
is devoted to collective effects of two atoms near a plas-
monic core-shell sphere containing a gain material. Finally,
in Sec. IV, we summarize our results and conclude.

II. SPONTANEOUS EMISSION OF TWO TWO-LEVEL
ATOMS IN CLOSE PROXIMITY TO A SPHERE

Let us consider two two-level atoms, located at r1 and
r2, that can be well described by two of their eigenstates,
{|gq〉, |eq〉}, where q = 1 for atom 1 and q = 2 for atom 2.
As usual, |gq〉 is the eigenstate with lowest energy (Egq =
−h̄ωq/2), i.e., the ground state, whereas |eq〉 is the eigenstate
with highest energy (Eeq = h̄ωq/2) coupled to |gq〉 by an
electric dipole moment dq ≡ 〈gq|d̂q|eq〉 [49]. Details of the
corresponding Hamiltonian of the two-atom system in the
electric dipole approximation are given in Appendix A.

By solving the Heisenberg equations of motion for the
atomic and field operators within the Born and Markov
approximations, one obtains the spontaneous emission
rate on a transition |eq〉 → |gq〉 of frequency ωq: γ rad

q =
2π
∑

kp |gkp(rq)|2δ(ωk − ωq), where gkp(rq) is the atom-field
coupling coefficient associated with atom q and a field with
wave vector k and polarization p [49]. In terms of the mode
functions ukp(rq) defined in Appendix A, which are solutions
of a vector Helmholtz equation related to the electromagnetic
environment, one has

γ rad
q (rq) = πωq

ε0 h̄

∑
kp

|dq · ukp(rq)|2δ(ωk − ωq), (1)

which is the same result obtained by the Weisskopf-Wigner
theory [49]. In vacuum, Eq. (1) retrieves the well-known result
for the Einstein A coefficient:

γ (0)
q ≡ |dq|2ω3

q

3πε0 h̄c3
. (2)

In addition, due to the coupling between the atoms
through the vacuum field, one also has the cross-
damping spontaneous emission rate [10,50]: γ rad

12 = γ rad
21 =

2π
∑

kp Re[gkp(r1)g∗
kp(r2)]δ(ωk − ω0), where ω0 = (ω1 +

ω2)/2. Using Eq. (A4), we obtain the cross-damping decay
rate

γ rad
12 (r1, r2) = γ rad

21 (r2, r1)

= πω0

ε0 h̄

∑
kp

Re[d1 · ukp(r1)u∗
kp(r2) · d∗

2]

× δ(ωk − ω0), (3)

which shows explicitly the cooperative effect of the dipole-
dipole interaction in the spontaneous emission rate.

A. Radiative decay rates of two excited atoms near a sphere

The analytical expressions for the spontaneous decay rates
associated with a single quantum emitter in the vicinity of a
sphere are well known [20,51]. They can be readily calculated
by substituting the vector mode functions from Appendix B,
Eqs. (B7)–(B10), into Eq. (1):

γ rad
q (kqrq) = |d̂q · r̂|2γ rad

q⊥ (kqrq)

+ (1 − |d̂q · r̂|2)γ rad
q|| (kqrq), (4)

where the contributions of the electric dipole moment dq

oriented orthogonal (⊥) or parallel (||) to the spherical surface
are, respectively,

γ rad
q⊥ (kqrq)

γ
(0)

q

= 3

2

∞∑
�=1

�(� + 1)(2� + 1)

×
∣∣∣∣∣ j�(kqrq) − a�h(1)

� (kqrq)

kqrq

∣∣∣∣∣
2

, (5)

γ rad
q|| (kqrq)

γ
(0)

q

= 3

4

∞∑
�=1

(2� + 1)

[∣∣∣∣ψ ′
�(kqrq) − a�ξ

′
�(kqrq)

kqrq

∣∣∣∣2
+ ∣∣ j�(kqrq) − b�h(1)

� (kqrq)
∣∣2], (6)

with q = {1, 2} and kq = ωq/c. If the atomic dipoles
have arbitrary orientations in relation to the spherical
surface, one can consider the spatial mean: |d̂q · r̂|2 = 1/3.
To derive Eqs. (5) and (6) we have used the mode
functions ukp(rq) defined in Appendix B and the
relations [52]

∫ 1
−1 d (cos θ )(π�π�′ + τ�τ�′ ) = [2�2(� + 1)2/

(2� + 1)]δ��′ ,
∫ 1
−1 d (cos θ )(π�τ�′ + τ�π�′ ) = 0, and

∫ 1
−1 d

(cos θ ) sin2 θπ�π�′ = [2�(� + 1)/(2� + 1)]δ��′ , where π� and
τ� are generalized Legendre functions. The corresponding
decay rates in free space are retrieved by taking a� = 0 = b�

and using the identities [20]

∞∑
�=1

�(� + 1)(2� + 1)
j2
� (kqrq)

(kqrq)2
= 2

3
, (7)

∞∑
�=1

(2� + 1)

[
j2
� (kqrq) + ψ ′2

� (kqrq)

(k0rq)2

]
= 4

3
, (8)
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and hence γ rad
q⊥ = γ rad

q|| = γ (0)
q . Using these general ideas, be-

fore considering the influence of a spherical body on two
excited atoms, it is convenient to determine the cooperative
decay rate of two atoms in free space, and then generalize it
to the case of a spherical body in their vicinity.

For two two-level atoms in free space, we can use
directly the mode functions ukx(r) = eıkr cos θk (− sin θkek +
cos θkeθk )/

√
V and uky(r) = eıkr cos θk eϕk /

√
V (V the quan-

tization volume) instead of Eqs. (B7) and (B9), which are
the corresponding expansions in spherical wave functions.
Here, we have no restriction on the coordinate system to
perform the integrals on k space. This is due to the fact that
the spontaneous decay rates in free space depend only on
the interatomic distance r12 = |r1 − r2| instead of r1 and r2.
Without loss of generality, we choose a coordinate system in
which r1 is parallel to r2, which implies |r1 − r2| = |r1 − r2|,
i.e., k · (r1 − r2) = k(r1 − r2) cos θk . Using the definition in
Eq. (3), for the radial and nonradial orientations of the atomic
dipole (in relation to the chosen spherical coordinate system),
we obtain the well known cross-damping decay rates in free
space [4,53]:

γ
(0)

12⊥√
γ

(0)
1 γ

(0)
2

= 3

[
−cos(k0r12)

(k0r12)2
+ sin(k0r12)

(k0r12)3

]
, (9)

γ
(0)

12||√
γ

(0)
1 γ

(0)
2

= 3

2

[
sin(k0r12)

k0r12
+ cos(k0r12)

(k0r12)2
− sin(k0r12)

(k0r12)3

]
,

(10)

where we have considered r12 = |r1 − r2| and k0 = ω0/c,
with ω0 = (ω1 + ω2)/2 and |ω1 − ω2| � ω0. In addition,
since r1 and r2 are parallel, we can introduce the total cross-
damping decay rate in free space as

γ
(0)

12 = Re
{
(d̂1 · r̂12)(d̂∗

2 · r̂12)γ (0)
12⊥

+ [d̂1 · d̂∗
2 − (d̂1 · r̂12)(d̂∗

2 · r̂12)]γ (0)
12||
}
, (11)

where the radial and nonradial contributions are given in
Eqs. (9) and (10), respectively. Substituting Eqs. (9) and (10)
into Eq. (11), one retrieves the well-known expression for
the cross-damping decay rate in free space [50,54]. Note
that Eq. (11) was here introduced as a generalization of the
single-emitter case, Eq. (4), to the case of two emitters by
imposing r12 parallel to r.

Of course, one could also calculate the above cross-
damping decay rates in free space using the expansions of
plane waves in terms of spherical harmonics, Eqs. (B7) and
(B9) in Appendix B. Since there is no restriction on the
coordinate system, one could again consider that r1 and r2 are
parallel. However, within this framework, we can explore the
properties of spherical functions to obtain a general result for
any spherical coordinate system, in which there is an arbitrary
angle α between r1 and r2; see Fig. 1:

r2
12 = r2

1 + r2
2 − 2r1r2 cos α. (12)

To this end, we use the addition theorem of spherical harmon-
ics, which can be reduced to the following expression for the

FIG. 1. Two point-dipole emitters located in the vicinity of a
coated sphere. The core-shell sphere has inner radius a and outer
radius b, with electric permittivities εc for the core and εs for the shell.
The dipole emitters are characterized by the atomic dipole moment
dq and are located at rq, with q = {1, 2}. The interatomic distance is
r12 = |r12| = |r1 − r2|, with α being the angle between r1 and r2.

spherical Bessel function [55]:

∞∑
�=0

(2� + 1) j�(k0r1) j�(k0r2)P�(cos α) = sin(k0r12)

k0r12
, (13)

where P�(cos α) is a Legendre polynomial. By deriving
Eq. (13) in relation to cos α and recalling the definition
P′

�(cos α) = π�(cos α) [52], we obtain

∞∑
�=1

(2� + 1)
j�(k0r1)

k0r1

j�(k0r2)

k0r2
π�(cos α)

= −cos(k0r12)

(k0r12)2
+ sin(k0r12)

(k0r12)3
. (14)

Since π�(1) = �(� + 1)/2, as α = 0 and r1 → r2, Eq. (14) is
equivalent to Eq. (7) for kq = k0. Although it is not straightfor-
ward, a generalization of Eq. (8) can also be obtained. Indeed,
we have verified that

∞∑
�=1

(2� + 1)

�(� + 1)

[
j�(k0r1) j�(k0r2)τ�(cos α)

+ ψ ′
�(k0r1)

k0r1

ψ ′
�(k0r2)

k0r2
π�(cos α)

]
= sin(k0r12)

k0r12
+ cos(k0r12)

(k0r12)2
− sin(k0r12)

(k0r12)3
, (15)

which corresponds to Eq. (8) for α = 0 and r1 → r2.
Provided any arbitrary spherical coordinate system,

Eqs. (14) and (15) allow us to calculate the cooperative
decay rate of two dipole emitters in free space in terms
of spherical wave functions, which is one of the main an-
alytical results of our study. The general expression of the
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cooperative decay rate in terms of Bessel functions is readily
obtained by substituting Eqs. (14) and (15) into Eqs. (9) and
(10), respectively. Note that Eq. (11) remains unchanged for
α �= 0.

Now, we can finally calculate the cross-damping decay rate
of two quantum emitters near a sphere centered at the origin of
a spherical coordinate system. To be consistent with the well-
known result in free space, Eq. (11), the radiative contribution

of the total cross-damping decay rate must have the form

γ rad
12 = Re

{
(d̂1 · r̂12)(d̂∗

2 · r̂12)γ rad
12⊥

+ [d̂1 · d̂∗
2 − (d̂1 · r̂12)(d̂∗

2 · r̂12)]γ rad
12||
}
, (16)

where γ rad
12⊥ and γ rad

12|| are calculated by using Eq. (3)
and the corresponding mode functions, Eqs. (B7)–(B10) in
Appendix B. After some calculations, we obtain

γ rad
12⊥(k0r1, k0r2, cos α)√

γ
(0)

1 γ
(0)

2

= 3
∞∑

�=1

(2� + 1)Re

{[
j�(k0r1) − a�h(1)

� (k0r1)

k0r1

][
j�(k0r2) − a∗

�h(1)∗
� (k0r2)

k0r2

]}
π�(cos α), (17)

γ rad
12||(k0r1, k0r2, cos α)√

γ
(0)

1 γ
(0)

2

= 3

2

∞∑
�=1

(2� + 1)

�(� + 1)
Re

{[
ψ ′

�(k0r1) − a�ξ
′
�(k0r1)

k0r1

][
ψ ′

�(k0r2) − a∗
�ξ

′∗
� (k0r2)

k0r2

]
π�(cos α)

+ [
j�(k0r1) − b�h(1)

� (k0r1)
][

j�(k0r2) − b∗
�h(1)∗

� (k0r2)
]
τ�(cos α)

}
, (18)

where we have used Eqs. (14) and (15) to generalize the
case α = 0 to 0 � α � π . Due to this generalization, note
in Eq. (16) that the subscripts indicating the contributions of
dipole moments dq oriented orthogonal (⊥) or parallel (||)
to the particle surface have a straightforward interpretation
only for α = 0 or α = π , i.e., when r12 is parallel to r.
Indeed, for α �= 0 and α �= π , the prefactor of γ rad

12⊥ in Eq. (16)
indicates the projection of dq onto r12, with q = {1, 2}. Here
we consider that the direction of the electric dipole moments
dq coincides with the direction of the local electric field
outside the sphere at the point of space the emitter is located.
This electric field can be calculated using the Lorenz-Mie
theory given in Appendix C.

B. Nonradiative decay rates near a sphere and frequency shifts

The theory provided so far only tells us how to calculate
the radiative contribution of the decay rates. In order to in-
clude nonradiative contributions on the expressions calculated
above, we apply a heuristic approach based on energy con-
servation in the Lorenz-Mie theory. The Lorenz-Mie theory
describes the light scattering by a sphere of arbitrary radius,
where the scattering coefficients a� and b� are associated
with the extinction, scattering, and absorption cross sections,
respectively [52]:

σext = 2π

k2

∞∑
�=1

(2� + 1)Re(a� + b�), (19)

σsca = 2π

k2

∞∑
�=1

(2� + 1)(|a�|2 + |b�|2), (20)

σabs = σext − σsca. (21)

In the absence of absorption, σabs = 0 and one has |a�|2 =
Re(a�) and |b�|2 = Re(b�), i.e., the extinction and scattering
cross sections are interchangeable: σext = σsca. This allows us
to derive the total decay rate γ from the radiative contributions
by rewriting Eqs. (5)–(18) in terms of |a�|2 and |b�|2, and
then changing |a�|2 → Re(a�) and |b�|2 → Re(b�). From this

procedure, we obtain well-known expressions for the total
decay rates of a single quantum emitter at rq [20]:

γq⊥(kqrq)

γ
(0)

q

= 1 − 3

2

∞∑
�=1

�(� + 1)(2� + 1)

× Re

⎧⎨⎩a�

[
h(1)

� (kqrq)

kqrq

]2
⎫⎬⎭, (22)

γq||(kqrq)

γ
(0)

q

= 1 − 3

4

∞∑
�=1

(2� + 1)Re

{
a�

[
ξ ′
�(kqrq)

kqrq

]2

+ b�

[
h(1)

� (kqrq)
]2}

. (23)

In addition, the Green’s tensor formalism associates the
real and imaginary parts of the Green function (dotted into
the dipole moment) to the total decay rate γ and the shift δ

of the transition frequency due to the presence of the sphere,
respectively [56]. Applying this formalism to Eqs. (22) and
(23), one has the corresponding frequency shifts [57]

δ⊥
q (kqrq)

γ
(0)

q

= 3

4

∞∑
�=1

�(� + 1)(2� + 1)Im

⎧⎨⎩a�

[
h(1)

� (kqrq)

kqrq

]2
⎫⎬⎭,

(24)

δ||
q (kqrq)

γ
(0)

q

= 3

8

∞∑
�=1

(2� + 1)Im

{
a�

[
ξ ′
�(kqrq)

kqrq

]2

+ b�

[
h(1)

� (kqrq)
]2}

, (25)

where δq = |d̂q · r̂|2δ⊥
q + (1 − |d̂q · r̂|2)δ||

q [57]. Usually, the
frequency shift δq is already encoded in ωq in the calculations.
To simplify our discussion, we assume from now on that
ωq ≡ ωq + δq.

Similarly, for the case of two atoms, the cooperative decay
rate γ12 is associated with a frequency shift δ12 of the atomic
levels, known as the retarded dipole-dipole interaction. From
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a fully quantum treatment of two emitters, γ12 and δ12 are re-
lated to each other through a response function χαβ (r1, r2, ω0)
[54,58]:

2δ12 − ıγ12 = −1

h̄

∑
α,β

dα
1 dβ

2 χαβ (r1, r2, ω0). (26)

The response function can be understood as the αth com-
ponent of the electric field at r1 produced by an oscillating
dipole at r2 and oriented along the β direction. Since the
response function in free space χαβ (r1, r2, ω0) ∝ eık0r12/k0r12,
we readily obtain the corresponding retarded dipole-dipole

interaction from Eqs. (9), (10), and (26) [4,53]:

δ
(0)
12⊥√

γ
(0)

1 γ
(0)

2

= −3

2

[
sin(k0r12)

(k0r12)2
+ cos(k0r12)

(k0r12)3

]
, (27)

δ
(0)
12||√

γ
(0)

1 γ
(0)

2

= 3

4

[
−cos(k0r12)

k0r12
+ sin(k0r12)

(k0r12)2
+ cos(k0r12)

(k0r12)3

]
.

(28)

Applying the energy conservation from Eqs. (19)–(21) to
the radiative cooperative decay rates, given in Eqs. (17) and
(18), we finally obtain the total cooperative decay rates

γ12⊥(k0r1, k0r2, cos α)√
γ

(0)
1 γ

(0)
2

= γ
(0)

12⊥√
γ

(0)
1 γ

(0)
2

− 3
∞∑

�=1

(2� + 1)Re

{
a�

[
h(1)

� (k0r1)h(1)
� (k0r2)

k2
0r1r2

]}
π�(cos α), (29)

γ12||(k0r1, k0r2, cos α)√
γ

(0)
1 γ

(0)
2

= γ
(0)

12||√
γ

(0)
1 γ

(0)
2

− 3

2

∞∑
�=1

(2� + 1)

�(� + 1)
Re

{
a�

[
ξ ′
�(k0r1)ξ ′

�(k0r2)

k2
0r1r2

]
π�(cos α)

+ b�

[
h(1)

� (k0r1)h(1)
� (k0r2)

]
τ�(cos α)

}
, (30)

where χ�(z) = −zy�(z) is the Riccati-Neumann function. Hence the corresponding frequency shifts due to the dipole-dipole
interaction and the sphere, for the two basic orientations, are

δ12⊥(k0r1, k0r2, cos α)√
γ

(0)
1 γ

(0)
2

= δ
(0)
12⊥√

γ
(0)

1 γ
(0)

2

− 3

2

∞∑
�=1

(2� + 1)Im

{
a�

[
h(1)

� (k0r1)h(1)
� (k0r2)

k2
0r1r2

]}
π�(cos α), (31)

δ12||(k0r1, k0r2, cos α)√
γ

(0)
1 γ

(0)
2

= δ
(0)
12||√

γ
(0)

1 γ
(0)

2

− 3

4

∞∑
�=1

(2� + 1)

�(� + 1)
Im

{
a�

[
ξ ′
�(k0r1)ξ ′

�(k0r2)

k2
0r1r2

]
π�(cos α)

+ b�

[
h(1)

� (k0r1)h(1)
� (k0r2)

]
τ�(cos α)

}
. (32)

Now we are in conditions to calculate the total decay
rates and the corresponding nonradiative decay rates. For two
atomic dipoles q = {1, 2}, we finally have the nonradiative
contributions

γ nrad
q (kqrq) = γq(kqrq) − γ rad

q (kqrq), (33)

γ nrad
12 (k0r1, k0r2) = γ12(k0r1, k0r2) − γ rad

12 (k0r1, k0r2), (34)

where the total decay rates are γq = |d̂q · r̂|2γq⊥ + (1 − |d̂q ·
r̂|2)γq|| and

γ12 = Re{(d̂1 · r̂12)(d̂∗
2 · r̂12)γ12⊥

+ [d̂1 · d̂∗
2 − (d̂1 · r̂12)(d̂∗

2 · r̂12)]γ12||}. (35)

An analogous expression can be written for the total dipole-
dipole interaction by replacing the symbol γ with δ in
Eq. (35).

III. INTENSITY-INTENSITY CORRELATIONS

In this paper, our aim is to investigate collective properties
of the emitted electromagnetic field associated with two point

dipoles near a core-shell sphere. To this end, it is convenient
to calculate correlation functions that combine the single-
emitter decay rate γq, the collective decay rate γ12, and the
dipole-dipole interaction δ12 in a single quantity. Correlation
functions such as the two-time intensity-intensity correlation
function g(2)(τ ) allow us to study collective effects in two-
atom systems as a potential source for nonclassical light fields,
e.g., photon antibunching and squeezing [4].

The steady-state second-order correlation function is de-
fined as

g(2)(R1, R2, τ ) = lim
t→∞

G(2)(R1, t ; R2, t + τ )

G(1)(R1, t )G(1)(R2, t + τ )
, (36)

where the first-order and second-order correlation functions
are, respectively,

G(1)(Rq, tq ) = 〈E−(Rq, tq )E+(Rq, tq )〉,
G(2)(R1, t1; R2, t2)

= 〈E−(R1, t1)E−(R2, t2)E+(R2, t2)E+(R1, t1)〉,
with R1 = R0eR1 and R2 = R0eR2 being the positions where
the field intensities are detected at time t1 = t and t2 = t + τ ,
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respectively, and E+(Rq, tq) and E−(Rq, tq ) are the positive
and negative frequency parts of the electric-field operator.
Depending on the value of g(2)(0), different field statistics of
the emitted light can be distinguished: antibunched [g(2)(0) <

1], coherent [g(2)(0) = 1], bunched [g(2)(0) > 1], and super-
bunched or extrabunched [g(2)(0) > 2] [59]. Indeed, g(2)(τ )
is proportional to a joint probability of finding one photon
around R1 at t1 and another photon around R2 at t2. Hence
g(2)(0) < g(2)(τ ) for τ > 0 implies photon antibunching, i.e.,
the joint probability of detecting two photons at the same
time t1 = t2 = t is smaller than at different times t1 = t and
t2 = t + τ ; conversely, for g(2)(0) > g(2)(τ ) one has photon
bunching in the emitted radiation.

In general, numerical methods are unavoidable to deal with
the second-order correlation function g(2) for more than one
atom. Nevertheless, for the two-atom system in the stationary
state, if the emitters are in equivalent positions in relation
to the driving coherent field (i.e., k · r12 = 0), the steady-
state atomic correlation functions can be simplified to obtain
analytical solutions [4]. In the limiting case of weak external
fields at resonance, one has a simple solution for the one-time
(τ = 0) second-order correlation function [4,5]:

g(2)
(
eR1 , eR2 , τ = 0

)
= 1

2

[(
1 + γ12

γ

)2

+
(

2δ12

γ

)2
]

× 1 + cos
[
k0r12 · (eR1 − eR2

)][
1 + cos

(
k0r12 · eR1

)][
1 + cos

(
k0r12 · eR2

)] ,
(37)

where γ = (γ1 + γ2)/2 and eR1 and eR2 are unit vectors of
R1 and R2, respectively. Interestingly, note that g(2)(0) ∝
|2δ12 − ı(γ + γ12)|2, i.e., it depends directly on the single-
atom decay rates (γ ) and the response function (2δ12 − ıγ12);
see Eq. (26). Moreover, conditions for photon bunching or
antibunching in the emitted field are readily obtained by set-
ting cos(k0r12 · eRq ) = −1 or cos[k0r12 · (eR1 − eR2 )] = −1,
respectively. As a result, the probability for the simultaneous
emission of two photons into the same direction eR1 = eR2

can never become zero for a two-atom system in free space.
A similar conclusion can be obtained for the case k0r12 �
1, which implies γ12 ≈ γ and δ12 � γ . Note that for very
weak external fields, one may observe g(2)(0) arbitrarily large
for cos(k0r12 · eRq ) = −1. This result does not necessarily
indicate very strong two-photon correlations, but rather that
the probability of the emission of two single photons is much
smaller than that of the simultaneous emission of two photons
[59].

Since we are interested in the influence of a core-shell
nanosphere on the properties of the emitted field, let us set
eR1 = eR2 = ez and r12 · ez = 0. The first condition corre-
sponds to the most commonly used configuration, where one
considers a single detector to collect the fluorescence emitted
by the atoms. The second condition implies that the emitters
are in equivalent positions in relation to a laser field propagat-
ing in the z direction. These assumptions lead to a simplified
expression for the two-time second-order correlation function,

which reads [5]

g(2)(ez, ez, τ ) = 1 − 2 cos(δ12τ )e−(γ+γ12 )τ/2

+ 1

4

[(
1 + γ12

γ

)2

+
(

2δ12

γ

)2
]

e−(γ+γ12 )τ

+ e−(γ+γ12 )τ +
(

1 + γ12

γ

)
e−(γ+γ12 )τ/2

×
[

cos(δ12τ ) + 2δ12

(γ + γ12)
sin(δ12τ ) − e−(γ+γ12 )τ/2

]
.

(38)

Again, we emphasize that we are considering the weak ex-
ternal field limit at resonance, i.e., the Rabi frequency can
be neglected in the calculations involving the relevant decay
rates and frequencies. Hence g(2)(τ ) does not depend on the
pump intensity in this limit, and we can focus our attention to
the influence of the dipole-dipole interaction strength and the
collective decay rate on the quantum system. Indeed, within
these assumptions, it is clear that Eq. (38) depends only on
γ , γ12, and δ12 for a fixed τ . In particular, for a single dipole
emitter one has [5]

g(2)(τ ) = (1 − e−γ τ/2)2. (39)

So far we have discussed expressions of g(2) calculated for
two emitters with the same transition frequency (ω1 = ω2)
in free space driven by a coherent resonant laser field. Here
we explore the fact that g(2) defined above depends only on
the LDOS and the response function to include the influence
of a core-shell sphere on the intensity-intensity correlations.
In order to apply Eq. (38) to the case of two emitters near
a spherical body, we impose that |r1| = |r2| and k · r12 = 0,
and hence γ1 ≈ γ2. This is necessary because Eq. (38) does
not include the case of nonidentical emitters (ω1 �= ω2 and
γ1 �= γ2), which would impose a dependence not only on
(γ1 + γ2) but also on (γ1 − γ2), where the splitting between
the intermediate collective states would be

√
δ2

12 + �2 instead
of δ12, with � = (ω1 − ω2)/2 [4,10]. A rigorous study of
g(2)(τ ) calculated for two emitters with ω1 �= ω2 and γ1 �= γ2

in the presence of a sphere, taking into account the detuning
from the incident laser beam, is beyond the scope of our
manuscript and will be addressed elsewhere. In addition, we
assume that the orientation of the electric dipole moments d1

and d2 are determined by local electric fields at r1 and r2,
respectively, which are composed by the incident field and the
field scattered by the sphere [60]. These classical fields are
given in Appendix C.

A. Light scattering by a gain-assisted nanosphere coated
with a plasmonic shell

First, let us briefly consider the scattering properties of a
silver (Ag) nanoshell coating a gain-assisted dielectric core.
Gain materials can be dielectric media doped with some
dye molecules or rare-earth ions, such as Pr3+, Ho3+, Er3+,
Eu2+, Nd3+, and Tm3+, which provide optical gain response
[43]. In these gain-assisted materials, there is an inversion
in the number of electrons such that the population in the
excited level is greater than in the lower level, which leads
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to a negative imaginary part of the refractive index. In light
scattering, this implies stimulated emission (σabs < 0) instead
of absorption (σabs > 0).

Here, we consider a linear gain material consisting of
doped AlGaAs, whose approximate refractive index at optical
frequencies is nAlGaAs = 3.5 − ıκ , with κ a phenomenological
gain coefficient (see Ref. [61] and references therein). This
linear gain approximation is valid at or below threshold [62].
To describe the dielectric function of Ag, we use a Drude-
Lorentz-Sommerfeld formula with an approximate interband
term given by a Lorentzian tail [63]:

εAg(ω)

ε0
= 1 − ω2

p

ω(ω + ıγ∞)
+ f ω2

L

ω2
L − ω2 − ı�Lω

, (40)

where h̄ωp = 9.17 eV, h̄γ∞ = 0.021 eV, h̄ωL = 5.27 eV,
h̄�L = 1.14 eV, and f = 2.2 are the parameters that provide
the best fit to the Johnson and Christy experiments [64], for
the spectral range of 380 to 1000 nm [63]. Throughout this
paper, we compare two different configurations regarding the
material parameters of core-shell sphere in optical frequen-
cies: a dielectric core without gain (κ = 0) and a gain-assisted
dielectric core (κ �= 0).

Figure 2 shows the scattering cross section of a (AlGaAs)
core-shell (Ag) nanosphere, with inner radius a = 180 nm
and outer radius b = 200 nm, as a function of the wavelength.
These geometrical parameters were chosen to fulfill two
conditions: (i) the scattering (plasmon) resonance occurs at
λ0 ≈ 780 nm and (ii) the effective size of the scatter is of the
order of λ0/2. This allows us to study the enhanced spon-
taneous emission rate of two single emitters with transition
wavelength λ0 = 780 nm in the vicinity of the sphere and
its corresponding influence on the collective parameters for
r12 ≈ λ0.

In Fig. 2 we show plots for the case of an inner di-
electric sphere with refractive index nc = nAlGaAs − ıκ , with
(κ = 0.015) and without (κ = 0) gain, coated with a silver
nanoshell within the Lorenz-Mie theory. The different con-
tributions of electric and magnetic multipoles to the total
scattering cross section σsca are highlighted in Figs. 2(a)
and 2(b). At the resonance, note that the main contributions
to the scattering are given by a broad electric dipole (ED)
resonance and a narrow magnetic quadrupole (MQ) resonance
at λ0 ≈ 780 nm, with a dominant ED response in Fig. 2(a)
without gain. Due to this hierarchy of different nonvanishing
multipole contributions, the overall scattering is anisotropic
(Mie scattering) and the differential scattering cross section
is peaked along the forward direction, remaining a dipole
radiation pattern perturbed by the presence of a MQ resonance
[see the left panel of Fig. 2(c)]. However, when a gain medium
is properly introduced within the core material (κ = 0.015), it
induces a stimulated emission within the core at λ0 ≈ 780 nm,
enhancing the near-field MQ response by at least two orders
of magnitude with respect to the ED response; see Fig. 2(b).
Physically, this effect is due to the near-field oscillation of
plasmons excited in the inner shell interface (r = a) by the
gain medium and the outer shell interface (r = b) by the
incident radiation, leading to a quadrupole radiation pattern,
as can be seen in the right panel of Fig. 2(c). In particular,
note the presence of a Fano line shape in the quadrupole

FIG. 2. Optical cross sections associated with light scattering by
a core-shell nanosphere in free space. A dielectric core of refractive
index nc = 3.5 − ıκ and radius a = 180 nm is coated with a silver
shell [63,64] of thickness b − a = 20 nm. The plots in (a) and
(b) show the total scattering cross section σsca for κ = 0 (no gain) and
κ = 0.015 (a gain-assisted core), respectively. We show multipole
contributions to the light scattering: electric dipole (ED), magnetic
dipole (MD), electric quadrupole (EQ), and magnetic quadrupole
(MQ). The plot in (c) shows the differential scattering cross section
associated with the MQ resonance (λ = 780 nm) for κc = 0 (left
panel) and κ = 0.015 (right panel).

contribution, which is a typical characteristic of interference
between spectrally narrow and broad resonances in plasmonic

023828-7



TIAGO J. ARRUDA et al. PHYSICAL REVIEW A 101, 023828 (2020)

FIG. 3. Two identical dipole emitters with |r1| = |r2| in the
vicinity of a core-shell sphere with a gain material inside. The incom-
ing electromagnetic wave is such that k · r12 = 0. We consider two
basic configurations: the interatomic distance vector r12 is orthogonal
or parallel to the incident electric field Ein. The detector is fixed in
the z direction.

systems [26]. Therefore, the inclusion of a gain medium inside
the dielectric core can strongly amplify the plasmonic Fano
resonance in the near field, leading to an enhanced ultranarrow
scattering resonance in the far field.

B. Gain-assisted collective spontaneous emission

The change on the radiation pattern from dipole to
quadrupole response in the far field in Fig. 2(c) is associated
with modifications to the local density of states (LDOS)
in the vicinity of the core-shell sphere. This modification
to the LDOS induced by a gain material inside the core-
shell sphere can be explored in the context of singe-photon
sources. The system is depicted in Fig. 3. We consider two
identical dipole emitters located at positions r1 and r2 (with
|r1| = |r2|) such that k · r12 = 0 [5]. As already discussed,
these two conditions are necessary for the application of the
analytical model of g(2)(τ ) presented in Eq. (38). For the
sphere, the parameters are the same as before: (AlGaAs) core-
shell (Ag) nanosphere with a = 180 nm and b = 200 nm.
Regarding the point-dipole emitters, we consider the emis-
sion wavelength λ0 = 780 nm and r12 = 800 nm, for two
basic configurations: r12 orthogonal or parallel to the incident
electric field Ein = E0epeık·r propagating along the positive z
direction. We emphasize that we only consider values of κ

for which γ > 0 and γ + γ12 > 0, so that Eq. (38) can be
applied.

First, consider in Fig. 4 the simple case of two emitters in
the vicinity of a plasmonic silver nanoshell with a dielectric
core (nc = 3.5). In the plots, we fix the interatomic distance
r12 and vary the position z of its midpoint (0, 0, z). In Fig. 4(a)
we see the behavior of the collective spontaneous emission
rate γ1 + γ12 (normalized to free space) when the polarization
is parallel (r12||ep) or orthogonal (r12 ⊥ ep) to the inter-
atomic distance. When the sphere is approximately in between
the two dipole emitters (−4b < z < 4b), we obtain different

tendencies regarding the two polarizations. When r12 is paral-
lel to the incident electric field Ein, we see a small asymmetry
between z < 0 and z > 0 and a maximum enhancement for
z = 0. Conversely, when r12 is orthogonal to Ein, the Purcell
factor is symmetric with respect to the sign of z and presents
two points of minimum Purcell factor at z ≈ ±2b. Similar
features appear in Figs. 4(b), 4(c), and 4(d).

The difference in symmetry with respect to z = 0 exhib-
ited by the collective parameters for r12||ep and r12 ⊥ ep is
associated with the Mie scattering regime, i.e., the anisotropic
scattering of light by the sphere. Indeed, it is the interference
of different field components with high-order multipole exci-
tations in the vicinity of the sphere that leads to asymmetric
collective parameters. As presented in Fig. 2, a sphere with
radius b of the same order of the wavelength (kb ≈ 1) exhibits
high-order multipole contributions (� > 1) to the light scatter-
ing, leading to an anisotropic scattering pattern; see Fig. 2(c).
Since the electric dipole moments d1 and d2 are parallel to
the local electric fields, this asymmetry between the backward
(z < 0) and forward (z > 0) scattering directions is expected
to appear in general due to a nonvanishing product of the
vector projections in Eq. (35): (d̂1 · r̂12)(d̂∗

2 · r̂12). It is pre-
cisely the product of the electric-field components presented
in Appendix C that leads to the interference of multipoles
with different orders, even for emitters in equivalent positions
in relation to the sphere and the incident field. For example,
considering the polarization along the x direction (ep = ex),
the spherical coordinates of the two emitters for the case
r12||ex are r1 = (r, θ, 0) and r2 = (r, θ, π ), with fixed r12 =
|r1 − r2|. One can verify that the corresponding local electric
fields have no azimuthal components for this configuration:
Eϕ (r1) = Eϕ (r2) = 0. In the vicinity of the sphere, the in-
terference of the radial and polar components of the electric
field in the xz plane (ex = sin θer + cos θeθ ) is not invariant
by changing z (or θ ) with −z (or π − θ ), which is indirectly
observed in Fig. 4. Conversely, for the case r12 ⊥ ex, one
has r1 = (r, θ, π/2) and r2 = (r, θ, 3π/2). The radial and
polar components of the local electric field vanish in this
configuration: Er (r1) = Er (r2) = 0 and Eθ (r1) = Eθ (r2) = 0.
This means that the dipole moments only have the azimuthal
component for r12 ⊥ ex. Since the emitters lie in the yz plane
(ex = −eϕ), we have (d̂1 · r̂12)(d̂∗

2 · r̂12) = 0 and d̂1 · d̂∗
2 = 1,

and hence the collective parameters are symmetric in relation
to z = 0.

In Figs. 4(b) and 4(c), we see that both the cross-damping
decay rate γ12 and the dipole-dipole interaction δ12 have
different signs depending on the polarization, with strong
variations when the point dipoles are very close to the sphere.
More importantly, we see in Fig. 4(d) the modulation of
g(2)(0) as a function of the polarization. At z = 0, i.e., when
the sphere is at the midpoint between the two emitters, g(2)(0)
is reduced by half by changing from r12 ⊥ ep [g(2)(0) ≈ 0.35]
to r12||ep [g(2)(0) ≈ 0.17]. Note that a change in g(2)(0) is
also observed when the emitters are in vacuum. The value
of g(2)(0) does not depend on the polarization only for in-
dependent emitters [g(2)(0) = 0.25]. However, the presence
of the core-shell sphere increases g(2)(0) for r12 ⊥ ep and
decreases g(2)(0) for r12||ep when compared with the free
space configuration. In this case of κ = 0, the influence of the
near field in the vicinity of the sphere is not enough to change
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FIG. 4. Two dipole emitters with transition wavelength λ0 = 780 nm in the vicinity of a dielectric nanosphere (nc = 3.5) of radius a =
180 nm coated with an Ag nanoshell of radius b = 200 nm for a fixed interatomic distance r12 = 800 nm. The emitters are equally distant
from the center of the sphere, where (0, 0, z) is the position of the midpoint of the line connecting the emitters. γ (0)

1 = γ
(0)

2 is the single-emitter
decay rate in free space. The polarization of the incident electric field Ein is along x direction. (a) Comparison between the single-emitter
decay rate γ1 = γ2 (with and without the cross-damping decay rate γ12 contribution) in the vicinity of a coated sphere for two polarizations:
r12 is parallel (||) or orthogonal (⊥) to Ein. (b) The cross-damping decay rate γ12. (c) The dipole-dipole interaction δ12. (d) The normalized
intensity-intensity correlation function g(2)(τ = 0) for detectors in z direction. The dash-dotted line corresponds to g(2)(0) for independent
emitters (γ12 = 0 = δ12) in vacuum.

the system from g(2)(0) > 1 (photon bunching) to g(2)(0) < 1
(antibunching).

The collective parameters drastically change with the in-
troduction of a gain medium within the dielectric core; see
Fig. 5. All parameters are generally enhanced for point dipoles
close to a gain-assisted nanosphere (nc = 3.5 − ı0.015), pre-
senting huge variations in the range −4b < z < 4b. For in-
stance, we can see both the enhancement (z ≈ 0) and a
strong suppression (z ≈ −3b) of the spontaneous emission
in Fig. 5(a), change in sign of the cross-damping decay rate
γ12 in Fig. 5(b) from −γ

(0)
1 to γ

(0)
1 , and moderate values of

dipole-dipole interaction in Fig. 5(c). These modifications are
related to the amplification of near-field interactions induced
by the gain medium (EQ and MQ excitations; see Fig. 2). By
combining these gain-induced modifications into the one-time

second-order correlation function, we show in Fig. 5(d) that
we can achieve photon bunching [g(2)(0) > 1] and a strong
photon antibunching [g(2)(0) � 1] without changing the po-
sition of detectors or considering k0r12 � 1, which are the
trivial configurations; see Eq. (37). Instead, photon-bunching
or antibunching properties of the emitted field can be obtained
by properly setting the distance between emitters and sphere
for r12 ≈ λ0.

The different behaviors concerning the two polarizations of
the incident laser beam show that it is possible to switch from
classical to nonclassical emitted light by simply changing the
polarization, where emitters, sphere, and detectors are in fixed
positions. For instance, in Fig. 5(d) the position z ≈ −3.04b
shows photon bunching for point dipoles when Ein ⊥ r12 and
a strong photon antibunching when Ein||r12. This difference
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FIG. 5. Same quantities as in Fig. 4 but now with a gain-assisted core (nc = 3.5 − ı0.015). (a) Total decay rates for emitters when r12 is
orthogonal (⊥) or parallel (||) to the incident electric field Ein||ep as a function of z (the position of the midpoint of the line connecting the
two emitters; see inset). (b) The cross-damping decay rate γ12. (c) The dipole-dipole interaction δ12. (d) The normalized intensity-intensity
correlation function g(2)(τ = 0) for detectors in the z axis. The inset shows the possibility of tuning g(2)(0) by changing the polarization of the
laser beam.

for the two polarizations is related to the quadrupole pattern
of the scattering intensity exhibited by the sphere with a gain-
assisted core; see Fig. 2(c).

To make this point clear, in Fig. 6 we investigate the
photon-bunching and antibunching properties in the emitted
field by using the two-time second-order correlation function
g(2)(τ ) for z = −3.04b. The plots highlight the differences
between some of the configurations studied here. In Figs. 6(a)
and 6(b) we show the case of two dipole emitters in the
vicinity of a sphere with and without gain (solid lines), in vac-
uum with and without dipole-dipole interaction (dot-dashed
lines), a single emitter in the vicinity of a sphere with gain
(short-dotted line), and a single emitter in vacuum (dotted
line). For the sake of clarity, we introduce the angle ϕ between
the interatomic distance vector r12 and the polarization vector
ep. As can be seen in Fig. 6(a), g(2)(τ ) for a core-shell sphere

with gain (κ = 0.015) is smaller than g(2)(τ ) associated with
a single emitter in vacuum for τ > 1/γ

(0)
1 when ϕ = 0o.

Conversely, we clearly see photon bunching only for the case
of two emitters in the vicinity of a core-shell sphere with
gain (κ = 0.015) when ϕ = 90o. Indeed, for a fixed gain
coefficient κ = 0.015, we show in Fig. 6(b) that one could
continuously change from photon bunching to antibunching
by varying the angle ϕ. The value of the gain must be carefully
chosen according to the geometric parameters of the system,
as can be verified in Fig. 6(d). For example, note that a value of
κ = 0.0146 provides an even higher contrast than κ = 0.015
for g(2)(0) as a function of ϕ. Here, we emphasize that we are
considering values of the gain coefficient κ that only provide
positive decay rates γ and γ + γ12, so that Eq. (38) is valid.

To show the dependence of g(2)(0) on the geometric
parameters, we set a = 180 nm, b = 200 nm, and vary the
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FIG. 6. Two-time second-order correlation function g(2)(τ ) for two point-dipole emitters (λ0 = 780 nm) near a core-shell nanosphere with
the same parameters as in Fig. 5: a doped AlGaAs nanosphere (a = 180 nm) coated with an Ag layer (b = 200 nm). The emitters are in
equivalent position in relation to the sphere and the midpoint of the interatomic distance r12 = 800 nm is fixed at z = −3.04b. We consider
the detectors in z direction. The plots show the cases of a sphere with and without gain: two emitters in vacuum, two independent emitters
in vacuum (γ12 = δ12 = 0), single emitter near a sphere with gain (κ = 0.015), and single emitter in vacuum. ϕ is the angle between r12 and
Ein||ep. (a) g(2)(τ ) for r12||ep (ϕ = 0o). (b) g(2)(τ ) for r12 ⊥ ep (ϕ = 90o). (c) g(2)(τ ) for various angles ϕ when the gain coefficient is κ = 0.015.
(d) g(2)(0) as a function of ϕ for different values of the gain coefficient κ .

interatomic distance r12 for various values of κ . Once again,
the emitters are in equivalent position in relation to the sphere
(r1 = r2), where the midpoint of the line connecting the
emitters is fixed at z = −3.04b. Depending on the interatomic
distance r12, different values of κ may induce greater vari-
ations on g(2)(0) than for κ = 0.015 as a function of the
incident polarization. For instance, for r12 ≈ 6.9b and κ =
0.012, we obtain g(2)(0) ≈ 0.96 for r12 ⊥ Ein in Fig. 7(a) and
g(2)(0) ≈ 0.10 for r12||Ein in Fig. 7(b). This is due to the fact
that different values of κ change both phase and direction of
the electric dipole moments d1 and d2 in the vicinity of the
sphere, and hence g(2)(0). If we also vary z, other values of
κ will be suitable for switching the values of g(2)(0). Hence
a comprehensive study of the geometrical parameters of a

given system containing a gain material could provide an
optimal configuration for switching between photon-bunching
and antibunching effect.

IV. CONCLUSION

In conclusion, we have investigated theoretically the col-
lective spontaneous emission of two point-dipole emitters
near a plasmonic core-shell nanosphere containing a lin-
early amplifying medium. We have derived closed analytical
expressions for both the cross-damping decay rate and the
dipole-dipole interaction strength associated with two atomic
dipoles with arbitrary position and orientation in relation to a
sphere. Using a simplified model for g(2)(τ ) valid for dipole
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FIG. 7. One-time second-order correlation function g(2)(0) asso-
ciated with two emitters in the vicinity of a gain-assisted sphere
(nc = 3.5 − ıκ) of radius a = 180 nm coated with a silver shell of
radius b = 200 nm as a function of the interatomic distance r12.
The midpoint of the distance r12 is fixed at z = −3.04b. The plots
(a) and (b) show two different laser polarizations: r12 ⊥ ep and
r12||ep, respectively, where ep is the unity vector along the direction
of the incident electric field. The photon-bunching effect occurs
for r12 ≈ 4b and κ = 0.015 in (a) and can be switched to a strong
antibunching by changing the polarization to (b).

emitters in equivalent positions in relation to an incident laser
beam, we have shown the possibility of alternating between
photon-bunching and antibunching effect as a function of the
polarization of light and the position of emitters. We have
suggested that this can be achieved by properly introducing
a gain material inside a plasmonic nanoshell placed in the
vicinity of point-dipole emitters (e.g., quantum dots). This
result could be of interest to technological applications us-
ing polarization-dependent single-photon sources in linearly
amplifying artificial medium.
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APPENDIX A: HAMILTONIAN OF THE TWO
ATOM-FIELD SYSTEM

In the presence of an external electromagnetic field, the
Hamiltonian of the two atom-field system in the electric dipole
approximation is

Ĥ =
2∑

q=1

[
Ĥ(q)

atom + Ĥ(q)
int

]+ Ĥfield, (A1)

where Ĥ(q)
atom = h̄ωqŜz

q is the atomic Hamiltonian, with Ŝz
q =

(|eq〉〈eq| − |gq〉〈gq|)/2 being the energy operator of the qth
atom, Ĥfield = ∫V d3r[ε0Ê2(r) + μ−1

0 B̂2(r)]/2 is the electro-
magnetic field Hamiltonian, and Ĥ(q)

int = −d̂q · Ê(rq) is the
atom-field interaction Hamiltonian, with rq being the position
of the atom q = {1, 2} [49,54]. The electric dipole moment
operator satisfies 〈eq|d̂q|eq〉 = 0 = 〈gq|d̂q|gq〉 and has non-
vanishing off-diagonal elements, i.e., the eigenstates have
no permanent dipole moment. We define the dipole-moment
matrix element as dq ≡ 〈gq|d̂q|eq〉.

From the Coulomb gauge, the electric- and magnetic-
field operators are Ê(r, t ) = −∂Â(r, t )/∂t and B̂(r, t ) = ∇ ×
Â(r, t ), respectively, where the quantized transverse vector
potential is [49]

Â(r, t ) =
∑

α

√
h̄

2ωαε0
[uα (r)âα (t ) + u∗

α (r)â†
α (t )]. (A2)

On one hand, note that the quantum properties of the electric-
and magnetic-field operators are determined by the bosonic
annihilation and creation operators, âα (t ) and â†

α (t ), respec-
tively, with usual commutation relations: [âα (t ), âβ (t )] = 0
and [âα (t ), â†

β (t )] = δαβ . On the other hand, the mode func-
tions uα (r) are classical vector functions satisfying the vector
Helmholtz equation and the transversality condition: [∇2 +
k2
α]uα (r) = 0 and ∇ · uα (r) = 0, with kα = ωα/c. These clas-

sical functions are chosen to form an orthonormal set:∫
V d3r u∗

α (r) · uβ (r) = δαβ . In free space, one has ukp(r) =
eık·rep/

√
V , where ep is a polarization vector such that k ·

ep = 0 and V is the photon quantization volume.
For weak coupling between the atoms and the field,

one has the contributions to the Hamiltonian [49]: Ĥatom =
h̄ω0

∑2
q=1 Ŝz

q, Ĥfield =∑kp h̄ωk(â†
kpâkp + 1/2), and

Ĥint = −ı h̄
∑
kp

2∑
q=1

(Ŝ+
q + Ŝ−

q )[gkp(rq)âkp − g∗
kp(rq)â†

kp],

(A3)
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where Ŝ+
q = |eq〉〈gq| and Ŝ−

q = |gq〉〈eq| are the electric dipole
raising and lowering operators, respectively, and

gkp(rq) ≡
√

ωk

2ε0 h̄
dq · ukp(rq) (A4)

is a complex function associated with the coupling strength
between the qth atom and field. The dipole operators satisfy
the well-known commutation relations: [Ŝ+

q , Ŝ−
q′ ] = 2Ŝz

qδqq′ ,

[Ŝz
q, Ŝ±

q′ ] = ±Ŝ±
q δqq′ , and [Ŝ+

q , Ŝ−
q′ ]+ = δqq′ , with (Ŝ±

q )2 = 0.

APPENDIX B: MODE FUNCTIONS FOR TWO QUANTUM
EMITTERS NEAR A SPHERE

The influence of the environment on the spontaneous emis-
sion rate γ is encoded in the classical vector functions ukp. For
an atom in the vicinity of a spherical body, we can calculate
these mode functions from the Lorenz-Mie scattering theory
[52]. To this end, we have to consider

ukp(r) = u(0)
kp (r) + u(s)

kp(r), (B1)

where u(0)
kp (r) is the free space mode function (a plane wave)

and u(s)
kp(r) is the scattering contribution (the returning field)

from the spherical body.
Let us set the wave vector k = kez along the z axis of a co-

ordinate system. The origin of the coordinate system is located
at the center of a sphere of radius R and optical properties
(ε, μ). The surrounding medium is the vacuum (ε0, μ0). We
choose a basis of polarization vectors p = {ex, ey} to satisfy
k · ep = 0. For the polarization along the x axis, and assuming
the sphere material is linear, isotropic, and nonoptically active,
one has the expansions in spherical coordinates:

u(0)
kx (r) = 1√

V

∞∑
�=1

A�

[
M(1)

�1 (r) − ıN(1)
�1 (r)

]
, (B2)

u(s)
kx (r) = 1√

V

∞∑
�=1

A�

[
ıa�N(3)

�1 (r) − b�M(3)
�1 (r)

]
, (B3)

where A� = ı�(2� + 1)/[�(� + 1)], and M�1 and N�1 are TE
(odd) and TM (even) vector spherical harmonic functions
[52]:

M�1(r) = [cos ϕπ�(cos θ )eθ − sin ϕτ�(cos θ )eϕ]z�(kr),

N�1(r) = cos ϕ�(� + 1) sin θπ�(cos θ )
z�(kr)

kr
er

+ [cos ϕτ�(cos θ )eθ − sin ϕπ�(cos θ )eϕ]

× 1

kr

d[rz�(kr)]

dr
,

with z�(kr) being the spherical Bessel function j�(kr) for
(1) or the Hankel function of first kind h(1)

� (kr) for (3). The
angle-dependent functions are π�(cos θ ) = P1

� (cos θ )/ sin θ

and τ�(cos θ ) = dP1
� (cos θ )/dθ , where P1

� (cos θ ) is the as-
sociated Legendre function of first order. The vector mode
functions u(0)

ky (r) and u(s)
ky (r) for the polarization along the y

axis can be readily obtained by changing ϕ → ϕ + π/2 in
Eqs. (B2) and (B3), respectively. In particular, the Lorenz-Mie

coefficients a� and b� are determined by boundary conditions;
for the simplest case of a center-symmetric core-shell sphere,
with inner radius a and outer radius b, they read

a� = ñsψ
′
�(kb) − ψ�(kb)A�(nskb)

ñsξ
′
�(kb) − ξ�(kb)A�(nskb)

, (B4)

b� = ψ ′
�(kb) − ñsψ�(kb)B�(nskb)

ξ ′
�(kb) − ñsξ�(kb)B�(nskb)

, (B5)

with the auxiliary functions being

A�(nskb) = ψ ′
�(nskb) − Ã�χ

′
�(nskb)

ψ�(nskb) − Ã�χ�(nskb)
,

B�(nskb) = ψ ′
�(nskb) − B̃�χ

′
�(nskb)

ψ�(nskb) − B̃�χ�(nskb)
,

Ã� = ñsψ�(nska)ψ ′
�(ncka) − ñcψ

′
�(nska)ψ�(ncka)

ñsχ�(nska)ψ ′
�(ncka) − ñcχ

′
�(nska)ψ�(ncka)

,

B̃� = ñsψ
′
�(nska)ψ�(ncka) − ñcψ�(nska)ψ ′

�(ncka)

ñsχ
′
�(nska)ψ�(ncka) − ñcχ�(nska)ψ ′

�(ncka)
,

where the functions ψ�(z) = z j�(z), χ�(z) = −zy�(z),
and ξ�(z) = ψ�(z) − ıχ�(z) are the Riccati-Bessel,
Riccati-Neumann, and Riccati-Hankel functions, respectively,
with j� and y� being the spherical Bessel and Neumann
functions [52]. The relative refractive and impedance
indices (in relation to the surrounding medium) are
nq = √εqμq/(ε0μ0) and ñq = √εqμ0/(ε0μq), with q = c for
the core and q = s for the shell [65,66]. For nonmagnetic
materials (μq = μ0), one has ñq = nq [67].

To calculate the spontaneous emission rate of photons us-
ing Eq. (1) and (3), note that we have to integrate over k space
rather than position. Indeed, in order to calculate Eqs. (1) and
(3), we have to make the well-known replacement:

∑
kp

−→ lim
V →∞

∑
p

V

8π3

∫
d3k. (B6)

Usually, this change of coordinates from (r, θ, ϕ) to (k, θk, ϕk )
is not straightforward and requires the use of the addition
theorem of vector spherical harmonics, which is widely used
in multiple scattering schemes [68]. However, as discussed in
Ref. [31], by simple geometric arguments one can verify that
the mode functions in k space are obtained from Eqs. (B2) and
(B3) by changing k → k, θ → −θk , and ϕ → 0, where now
we have to consider ek instead of er . By this procedure, we
finally arrive at

u(0)
kx (r) = 1√

V

∞∑
�=1

A�

kr

{
ı sin θk j�(kr)�(� + 1)π�ek

+ [π�ψ�(kr) − ıτ�ψ
′
�(kr)]eθk

}
, (B7)

u(s)
kx (r) = 1√

V

∞∑
�=1

A�

kr

{−ı sin θka�h(1)
� (kr)�(� + 1)π�ek

− [b�π�ξ�(kr) − ıa�τ�ξ
′
�(kr)]eθk

}
, (B8)
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u(0)
ky (r) = 1√

V

∞∑
�=1

A�

kr
[ıπ�ψ

′
�(kr) − τ�ψ�(kr)]eϕk , (B9)

u(s)
ky (r) = 1√

V

∞∑
�=1

A�

kr
[−ıa�π�ξ

′
�(kr) + b�τ�ξ�(kr)]eϕk .

(B10)

APPENDIX C: LOCAL FIELDS IN THE VICINITY
OF A SPHERE

Based on the Lorenz-Mie theory, we consider the local
field in the vicinity of a sphere as a classical electromagnetic
wave with time-harmonic dependence e−ıωt . The electric field
consists of an incoming plane wave propagating along the
positive z direction and the corresponding scattered field by

the sphere [52]:

E(r) = Ein(r) + Esca (r), (C1)

where the incoming electric field is Ein(r) = E0exeık·r and

Esca (r) = 1

kr

∞∑
�=1

E�

{
ı cos ϕ sin θa�h(1)

� (kr)�(� + 1)π�er

− cos ϕ[b�π�ξ�(kr) − ıa�τ�ξ
′
�(kr)]eθ

− sin ϕ[ıa�π�ξ
′
�(kr) − b�τ�ξ�(kr)]eϕ

}
is the scattered electric field, with E� = ı�E0(2� + 1)/[�(� +
1)] and k = kez. The polarization along y direction is obtained
by replacing (ex; ϕ) with (ey; ϕ + π/2) in the expressions
of Ein and Esca. The Lorenz-Mie coefficients a� and b� are
evaluated at the angular frequency ω. In the far field (kr � 1),
one has Er ≈ 0 and Eθ , Eϕ ∝ E0(eıkz + eıkr/kr).
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